Junior Problems

J445. Find all pairs \((p, q)\) of primes such that \(p^2 + q^3\) is a perfect cube.

Proposed by Adrian Andreescu, University of Texas at Austin, USA

J446. Let \(a, b, c\) be positive real numbers such that \(ab + bc + ca = 3abc\). Prove that

\[
\frac{1}{2a^2 + b^2} + \frac{1}{2b^2 + c^2} + \frac{1}{2c^2 + a^2} \leq 1.
\]

Proposed by Nguyen Viet Hung, Hanoi University of Science, Vietnam

J447. Let \(N = d_0d_1 \cdots d_9\) be a 10-digit number with \(d_{k+5} = 9 - d_k\), for \(k = 0, 1, 2, 3, 4\). Prove that \(N\) is divisible by 41.

Proposed by Adrian Andreescu, University of Texas at Austin, USA

J448. Let \(a, b, c\) be real numbers such that \(a^2 + b^2 + c^2 = 1\). Prove that

\[
4 \leq \sqrt{a^4 + b^2 + c^2 + 1} + \sqrt{b^4 + c^2 + a^2 + 1} + \sqrt{c^4 + a^2 + b^2 + 1} \leq 3\sqrt{2}.
\]

Proposed by An Zhenping, Xianyang Normal University, China

J449. A square of area 1 is inscribed in a rectangle such that each side of the rectangle contains precisely a vertex of the square. What is the greatest possible area of the rectangle?

Proposed by Mircea Becheanu, Montreal, Canada

J450. Prove that in any triangle \(ABC\)

\[
\frac{r_a}{a} + \frac{r_b}{b} + \frac{r_c}{c} \geq \sqrt{\frac{3(4R + r)}{2R}}.
\]

Proposed by Nguyen Viet Hung, Hanoi University of Science, Vietnam
Senior Problems

S445. Solve in integers the equation:

\[x^3 - y^3 - 1 = (x + y - 1)^2. \]

Proposed by Adrian Andreescu, University of Texas at Austin, USA

S446. Let \(a \) and \(b \) be positive real numbers such that \(ab = 1 \). Prove that

\[\frac{2}{a^2 + b^2 + 1} \leq \frac{1}{a^2 + b + 1} + \frac{1}{a + b^2 + 1} \leq \frac{2}{a + b + 1}. \]

Proposed by An Zhenping, Xianyang Normal University, China

S447. Let \(a, b, c, d \geq -1 \) such that \(a + b + c + d = 4 \). Find the maximum of

\[(a^2 + 3) (b^2 + 3) (c^2 + 3) (d^2 + 3). \]

Proposed by Titu Andreescu, University of Texas at Dallas, USA

S448. Let \(ABC \) be a triangle with area \(\Delta \). Prove that for any point \(P \) in the plane of the triangle

\[AP + BP + CP \geq 2 \sqrt{3} \sqrt{\Delta}. \]

Proposed by Nguyen Viet Hung, Hanoi University of Science, Vietnam

S449. Find the maximum of

\[\left(\frac{9b + 4c}{a} - 6 \right) \left(\frac{9c + 4a}{b} - 6 \right) \left(\frac{9a + 4b}{c} - 6 \right), \]

over all positive real numbers \(a, b, c \).

Proposed by Titu Andreescu, University of Texas at Dallas, USA

S450. Let \(ABC \) be a triangle and \(D \) the foot of the altitude from \(B \). The tangents in \(B \) and \(C \) to the circumcircle of \(ABC \) meet in \(S \). Let \(P \) be the intersection of \(BD \) and \(AS \). We know that \(BP = PD \). Calculate \(\angle ABC \).

Proposed by Mihaela Berindeanu, Bucharest, România
Undergraduate Problems

U445. Let a, b, c be the roots of the equations $x^3 + px + q = 0$, where $q \neq 0$. Evaluate the sum

$$\frac{a^2}{b} + \frac{b^2}{c} + \frac{c^2}{a}$$

in terms of p and q.

Proposed by Nguyen Viet Hung, Hanoi University of Science, Vietnam

U446. Find the minimum of $\max \{|1 + z|, |1 + z^2|\}$, when z runs over all complex numbers.

Proposed by Robert Bosch, USA

U447. If F_n is the n^{th} Fibonacci number, then for fixed p show that

$$\sum_{k=1}^{n} \binom{n}{k} F_p^k F_{p-1}^{n-k} F_k = F_{pn}.$$

Proposed by Tarit Goswami, West Bengal, India

U448. Let $p \geq 5$ be a prime number. Prove that the polynomial

$$2X^p - p^3X + p^2$$

is irreducible in $\mathbb{Z}[X]$.

Proposed by Navid Safaei, Sharif University of Technology, Tehran, Iran

U449. Evaluate

$$\int_{0}^{\frac{\pi}{4}} \ln \frac{\tan \frac{x}{2}}{(\tan x)^2} dx.$$

Proposed by Perfetti Paolo, Università degli studi di Tor Vergata Roma, Italy

U450. Let P be a nonconstant polynomial with integer coefficients. Prove that for each positive integer n there are pairwise relatively prime positive integers k_1, k_2, \ldots, k_n such that $k_1 k_2 \cdots k_n = |P(m)|$ for some positive integer m.

Proposed by Titu Andreescu, University of Texas at Dallas, USA
Olympiad Problems

O445. Let a, b, c be positive real numbers such that $a + b + c = 3$. Prove that
\[\sqrt[3]{a^3 + b^3 + c^3} \leq \frac{3}{ab + bc + ca}. \]

Proposed by Nguyen Viet Hung, Hanoi University of Science, Vietnam

O446. Prove that in any triangle ABC the following inequality holds:
\[\sin \frac{A}{2} + \sin \frac{B}{2} + \sin \frac{C}{2} \leq \sqrt{2 + \frac{r}{2R}}. \]

Proposed by Dragoljub Miloševići, Gornji Milanovac, Serbia

O447. Let a, b, c be nonnegative real numbers such that $a^2 + b^2 + c^2 \geq a^3 + b^3 + c^3$. Prove that
\[a^3b^3 + b^3c^3 + c^3a^3 \leq a^2b^2 + b^2c^2 + c^2a^2. \]

Proposed by An Zhenping, Xianyang Normal University, China

O448. Prove that for any positive integers m and n there are m consecutive positive integer numbers such that each number has at least n divisors.

Proposed by Anton Vassilyev, Astana, Kazakhstan

O449. At the AwesomeMath Summer Camp, a teacher wants to challenge his 102 students. He gives them 19 green t-shirts, 25 red t-shirts, 28 purple t-shirts and 30 blue t-shirts, a t-shirt to each student. Then, he calls three students randomly: if they have a t-shirt with different colors, they must wear a t-shirt of the remaining color and must solve a problem given by the teacher. Is it possible that after some time all the students have all the t-shirts of the same color? (Assume that there are sufficient t-shirts for each color in the store).

Proposed by Alessandro Ventullo, Milan, Italy

O450. A computer had randomly assigned all labels from 1 through 64 to an 8×8 electronic board. Then it did it also randomly for the second time. Let n_k be the label of the square that had been originally assigned k. Knowing that $n_{17} = 18$, find the probability that
\[|n_1 - 1| + |n_2 - 2| + \cdots + |n_{64} - 64| = 2018. \]

Proposed by Titu Andreescu, University of Texas at Dallas, USA