
Junior problems

J445. Find all pairs (p, q) of primes such that p2 + q3 is a perfect cube.

Proposed by Adrian Andreescu, University of Texas at Austin, USA

Solution by Daniel Lasaosa, Pamplona, Spain
Let r be the integer such that p2 + q3 = r3. Since p2 > 0, 2 ≤ q < r are positive integers, and clearly
r2 + rq + q2 > r − q. Now, p2 = (r − q) (r2 + rq + q2), or r − q and r2 + rq + q2 must be either both equal to
p (absurd since they are different) or one equal to 1 and the other one equal to p2. Hence r = q + 1, and
p2 = r2 + rq + q2 = (2q + 1)2 − q(q + 1), or

(2q + 1 − p)(2q + 1 + p) = q(q + 1).

Now, q divides either 2q + 1 − p or 2q + 1 + p, hence q divides either p − 1 or p + 1. On the other hand,
p2 = 3q2+3q+1 < 4q2+4q+1 = (2q+1)2, or p−1 < 2q. It follows that either q = p−1, or q = p+1, or 2q = p+1.
In the first case, q = 2 and p = 3 are the only two consecutive primes, for p2 + q3 = 17, which is not a cube. In
the second case, q = 3 and p = 2 are again the only two consecutive primes, for p2 + q3 = 31, again not a cube.
Therefore, p = 2q−1, for 3q2+3q+1 = 4q2−4q+1, and q = 7, for p = 13, yielding p2+q3 = 169+343 = 512 = 83.
The only possible pair is therefore (p, q) = (13,7).

Also solved by Albert Stadler, Herrliberg, Switzerland; Alessandro Ventullo, Ithaca, NY, USA; Anish Ray,
Institute of Mathematics and Applications, Bhubaneswar, India; Ioan Viorel Codreanu, Satulung, Maramures,
Romania; Ioannis D. Sfikas, Athens, Greece; Nicusor Zlota, Traian Vuia Technical College, Focsani, Roma-
nia; Paul Revenant, Lycée du Parc, Lyon, France; Paul Vanborre-Jamin, Lycée Henri IV, Paris, France;
Raja Damanik, University of Amsterdam, Netherlands; Polyahedra, Polk State College, FL, USA; Vincelot
Ravoson and Terence Ngo, Paris, France; Takuji Imaiida, Fujisawa, Kanagawa, Japan; Athanasios Peppas,
Evangelliki Model School of Smyrna, Athens, Greece; Titu Zvonaru, Comănes,ti, Romania.
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J446. Let a, b, c be positive real numbers such that ab + bc + ca = 3abc. Prove that

1

2a2 + b2
+

1

2b2 + c2
+

1

2c2 + a2
≤ 1.

Proposed by Nguyen Viet Hung, Hanoi University of Science, Vietnam

Solution by Polyahedra, Polk State College, USA
Let x = bc, y = ca, and z = ab. Then x+y+z

3x = 3abc
3bc = a, x+y+z3y = b, x+y+z3z = c, and the inequality becomes

9x2y2

x2 + 2y2
+

9y2z2

y2 + 2z2
+

9z2x2

z2 + 2x2
≤ (x + y + z)2.

By the AM-GM inequality, x2 + 2y2 ≥ 3 3
√
x2y4, so 9x2y2

x2+2y2
≤ 3 3

√
x4y2 ≤ x2 + 2xy. Adding to this the other two

analogous inequalities completes the proof.

Also solved by AN-anduud Problem Solving Group, Ulaanbaatar, Mongolia; Vincelot Ravoson and Teren-
ce Ngo, Paris, France; Takuji Imaiida, Fujisawa, Kanagawa, Japan; Albert Stadler, Herrliberg, Switzerland;
Arkady Alt, San Jose, CA, USA; Ioannis D. Sfikas, Athens, Greece; Marin Chirciu and Octavian Stroe,
Colegiul National Zinca Golescu, Pitesti, Romania; Nicusor Zlota, Traian Vuia Technical College, Focsani,
Romania; Paolo Perfetti, Università degli studi di Tor Vergata Roma, Rome, Italy; Raja Damanik, Univer-
sity of Amsterdam, Netherlands; Guadalupe Russelle, University of the Philippines, Diliman, Quezon City,
Philippines; Nikos Kalapodis, Patras, Greece; Titu Zvonaru, Comănes,ti, Romania.
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J447. Let N = d0d1⋯d9 be a 10-digit number with dk+5 = 9 − dk, for k = 0,1,2,3,4. Prove that N is divisible
by 41.

Proposed by Adrian Andreescu, University of Texas at Austin, USA

Solution by Albert Stadler, Herrliberg, Switzerland
N is of the form

N =
4

∑
j=0

(aj105 + 9 − aj)10j =
⎛

⎝

4

∑
j=0

99999aj10j
⎞

⎠
+ 99999,

where a0, a1, a2, a3, a4 are digits from the set {0,1,2,3,4,5,6,7,8,9}
N is divisible by 41, since 99999 is.

Also solved by Konstantinos Kritharidis, Evangelliki Model School of Smyrna, Athens, Greece; Polya-
hedra, Polk State College, FL, USA; Vincelot Ravoson and Terence Ngo, Paris, France; Takuji Imaiida,
Fujisawa, Kanagawa, Japan; Athanasios Peppas, Evangelliki Model School of Smyrna, Athens, Greece; AN-
anduud Problem Solving Group, Ulaanbaatar, Mongolia; Francisco Javier Martínez Aguinaga, Universidad
Complutense de Madrid, Spain; Henry Ricardo, Westchester Area Math Circle, NY, USA; Ioan Viorel Co-
dreanu, Satulung, Maramures, Romania; Ioannis D. Sfikas, Athens, Greece; Joel Schlosberg, Bayside, NY,
USA; Daniel Lasaosa, Pamplona, Spain; Nicusor Zlota, Traian Vuia Technical College, Focsani, Romania;
Paul Revenant, Lycée du Parc, Lyon, France; Paul Vanborre-Jamin, Lycée Henri IV, Paris, France; Raja
Damanik, University of Amsterdam, Netherlands; Timothy Miller, Buffalo, NY, USA; Jae Yong Park, The
Lawrenceville School, Lawrenceville, NJ, USA; Joehyun Kim, Cresskill, NJ, USA; Anderson Torres, Sao
Paulo, Brazil; Titu Zvonaru, Comănes,ti, Romania.
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J448. Let a, b, c be real numbers such that a2 + b2 + c2 = 1. Prove that

4 ≤
√
a4 + b2 + c2 + 1 +

√
b4 + c2 + a2 + 1 +

√
c4 + a2 + b2 + 1 ≤ 3

√
2.

Proposed by An Zhenping, Xianyang Normal University, China

Solution by AN-anduud Problem Solving Group, Ulaanbaatar, Mongolia
From the given condition b2 + c2 = 1 − a2 and a2 − 1 ≤ 0. Hence we get

√
a4 + b2 + c2 + 1 =

√
a4 − a2 + 2 =

√
a2(a2 − 1) + 2 ≤

√
2.

Similarly, we have √
b4 + c2 + a2 + 1 ≤

√
2,

√
c4 + a2 + b2 ≤

√
2

Adding above three inequalities, we have
√
a4 + b2 + c2 + 1 +

√
b4 + c2 + a2 + 1 +

√
c4 + a2 + b2 + 1 ≤ 3

√
2.

RHS is proved. Equality holds only when {a, b, c} = {±1,0,0}.
LHS of given problem is equivalent to (1). That is

√
x2 − x + 2 +

√
y2 − y + 2 +

√
z2 − z + 2 ≥ 4 (1)

for x, y, z is nonnegative numbers such that x + y + z = 1.
f(t) =

√
t2 − t + 2 function is strictly convex on [0,+∞). Applying Jensen’s inequality we get

f(x) + f(y) + f(z) ≥ 3f (
1

3
x +

1

3
y +

1

3
z)

⇔
√
x2 − x + 2 +

√
y2 − y + 2 +

√
z2 − z + 2

≥ 3

√

(
1

3
(x + y + z))

2

−
1

3
(x + y + z) + 2 = 4.

Hence (1) is proved.

Also solved by Daniel Lasaosa, Pamplona, Spain; Nikos Kalapodis, Patras, Greece; Konstantinos Kri-
tharidis, Evangelliki Model School of Smyrna, Athens, Greece; Polyahedra, Polk State College, FL, USA;
Vincelot Ravoson and Terence Ngo, Paris, France; Takuji Imaiida, Fujisawa, Kanagawa, Japan; Athanasios
Peppas, Evangelliki Model School of Smyrna, Athens, Greece; Jae Yong Park, The Lawrenceville School,
Lawrenceville, NJ, USA; Joehyun Kim, Cresskill, NJ, USA; Albert Stadler, Herrliberg, Switzerland; Ángel
Plaza, University of Las Palmas de Gran Canaria, Spain; Arkady Alt, San Jose, CA, USA; Ioan Viorel
Codreanu, Satulung, Maramures, Romania; Ioannis D. Sfikas, Athens, Greece; Nicusor Zlota, Traian Vuia
Technical College, Focsani, Romania; Paul Revenant, Lycée du Parc, Lyon, France; Paolo Perfetti, Univer-
sità degli studi di Tor Vergata Roma, Rome, Italy; Raja Damanik, University of Amsterdam, Netherlands;
Titu Zvonaru, Comănes,ti, Romania.
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J449. A square of area 1 is inscribed in a rectangle such that each side of the rectangle contains precisely a
vertex of the square. What is the greatest possible area of the rectangle?

Proposed by Mircea Becheanu, Montreal, Canada

First solution by Polyahedra, Polk State College, USA
Since the length and width of the rectangle are both less than or equal to the diagonal of the square, the
area of the rectangle is no greater than (

√
2)(

√
2) = 2. This maximum is attained when the rectangle is a

square with the midpoints of its sides as the vertices of the inscribed square.

Second solution by Solution by Daniel Lasaosa, Pamplona, Spain
Let ABCD be the square, and TUVW the rectangle, such that A ∈ TU , B ∈ UV , C ∈ VW and D ∈ WT .
Denote ∠BAU = α, or clearly ∠CBV = ∠DCW = ∠ADT = α and ∠TAD = ∠UBA = ∠V CB = ∠WDC =

90○ − α, or AU = BV = CW = DT = cosα, TA = UB = V C = WD = sinα. The rectangle TUVW is then a
square with sidelength cosα + sinα, and by the AM-QM inequality, its area is

(cosα + sinα)2 ≤ 4(
cos2 α + sin2 α

2
) = 2.

The maximum area is obtained when the rectangle is a square, whose sides have for midpoints the vertices
of the square of area 1.

Also solved by Vincelot Ravoson and Terence Ngo, Paris, France; Takuji Imaiida, Fujisawa, Kanagawa,
Japan; Jae Yong Park, The Lawrenceville School, Lawrenceville, NJ, USA; Joehyun Kim, Cresskill, NJ, USA;
Dionysios Adamopoulos, 3rd High School, Pyrgos, Greece; Ioannis D. Sfikas, Athens, Greece; Albert Stadler,
Herrliberg, Switzerland; Timothy Miller, Buffalo, NY, USA; George Theodoropoulos, 2nd High School of
Agrinio, Greece; Titu Zvonaru, Comănes,ti, Romania.
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J450. Prove that in any triangle ABC
ra
a
+
rb
b
+
rc
c
≥

√
3 (4R + r)

2R
.

Proposed by Nguyen Viet Hung, Hanoi University of Science, Vietnam

Solution by Paolo Perfetti, Università degli studi di Tor Vergata Roma, Rome, Italy
If r and F denote respectively the inradius and the area of the triangle we have

ra =
sr

a(s − a)
=

F

a(s − a)

Thus, the inequality becomes (R = abc/(4sr))

F∑
cyc

1

a(s − a)
≥

√
3(4R + r)

2R
=

√
3

2

4sr2

abc
+ 6

Now, let’s change variables a = y + z, b = x + z, c = x + y and get

√
(x + y + z)xyz∑

cyc

1

(y + z)x
≥

√

6 + 6
xyz

(x + y)(y + z)(z + x)

Upon squaring the inequality becomes equivalent to

∑
cyc

x4y4 ≥∑
cyc

x4y2z2

and the conclusion follows from the AGM inequality.

Also solved by Daniel Lasaosa, Pamplona, Spain; Polyahedra, Polk State College, FL, USA; Arkady Alt,
San Jose, CA, USA; Ioan Viorel Codreanu, Satulung, Maramures, Romania; Ioannis D. Sfikas, Athens,
Greece; Marin Chirciu, Colegiul National Zinca Golescu, Pitesti, Romania; Nicusor Zlota, Traian Vuia
Technical College, Focsani, Romania; Albert Stadler, Herrliberg, Switzerland.
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Senior problems

S445. Solve in integers the equation:
x3 − y3 − 1 = (x + y − 1)2

Proposed by Adrian Andreescu, University of Texas at Austin, USA

Solution by Daniel Lasaosa, Pamplona, Spain
Note that the RHS is non negative, or x3 > y3, hence d = x − y is a positive integer, whereas s = x + y is an
integer. After some algebra, the proposed equation rewrites as

4s2 − 8s + 8 = 3ds2 + d3.

Note now that if d ≥ 3, and since s2 is a nonnegative integer, we have

4s2 − 8s + 8 = 3ds2 + d3 ≥ 9s2 + 27 = 4s2 − 8s + 8 + 4(s + 1)2 + s2 + 15 > 4s2 − 8s + 8,

absurd, or d ∈ {1,2}. If d = 1, then 0 = s2 − 8s + 7 = (s − 1)(s − 7), with solutions (x, y) = (1,0) and
(x, y) = (4,3), which are indeed found to satisfy the proposed equation. If d = 2, then 0 = s2 + 4s = s(s + 4),
with solutions (x, y) = (1,−1) and (x, y) = (−1,−3), which also satisfy the proposed equation. There can be
no more integer solutions.

Also solved by Takuji Imaiida, Fujisawa, Kanagawa, Japan; Jae Yong Park, The Lawrenceville School,
Lawrenceville, NJ, USA; Joehyun Kim, Cresskill, NJ, USA; Albert Stadler, Herrliberg, Switzerland; G. C.
Greubel, Newport News, VA, USA; Ioannis D. Sfikas, Athens, Greece.
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S446. Let a and b be positive real numbers such that ab = 1. Prove that

2

a2 + b2 + 1
≤

1

a2 + b + 1
+

1

a + b2 + 1
≤

2

a + b + 1
.

Proposed by An Zhenping, Xianyang Normal University, China

Solution by Paolo Perfetti, Università degli studi di Tor Vergata Roma, Rome, Italy
Applying Cauchy–Schwarz to the RHS yields

(a2 + b + 1)(1 + b + 1) ≥ (a + b + 1)2, (a + b2 + 1)(a + 1 + 1) ≥ (a + b + 1)2

Hence, the RHS is implied by

2 + b

(a + b + 1)2
+

2 + a

(a + b + 1)2
≤

2

a + b + 1
⇐⇒

4 + a + b

(a + b + 1)2
≤

2

a + b + 1

We get

a + b + 1 ≥ 2 +
a + b

2
⇐⇒ a + b ≥ 2

and this follows by the AGM inequality
a + b ≥ 2

√
ab = 2

Now, applying Cauchy–Schwarz to the LHS gives

1

a2 + b + 1
+

1

b2 + a + 1
≥

(1 + 1)2

a2 + b2 + a + b + 2

2

a2 + b2 + 1
≤

4

a2 + b2 + a + b + 2

which simplifies to
a2 + b2 ≥ a + b

and the conclusion follows.

Also solved by Daniel Lasaosa, Pamplona, Spain; Vincelot Ravoson and Terence Ngo, Paris, France;
Takuji Imaiida, Fujisawa, Kanagawa, Japan; Nikos Kalapodis, Patras, Greece; Jae Yong Park, The Law-
renceville School, Lawrenceville, NJ, USA; Joehyun Kim, Cresskill, NJ, USA; Anderson Torres, Sao Paulo,
Brazil; Dionysios Adamopoulos, 3rd High School, Pyrgos, Greece; Albert Stadler, Herrliberg, Switzerland;
AN-anduud Problem Solving Group, Ulaanbaatar, Mongolia; Ángel Plaza, University of Las Palmas de Gran
Canaria, Spain; Arkady Alt, San Jose, CA, USA; Ioan Viorel Codreanu, Satulung, Maramures, Romania;
Ioannis D. Sfikas, Athens, Greece; Marin Chirciu and Octavian Stroe, Colegiul National Zinca Golescu, Pi-
testi, Romania; Nicusor Zlota, Traian Vuia Technical College, Focsani, Romania; Titu Zvonaru, Comănes,ti,
Romania.
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S447. Let a, b, c, d ≥ −1 such that a + b + c + d = 4. Find the maximum of

(a2 + 3) (b2 + 3) (c2 + 3) (d2 + 3) .

Proposed by Titu Andreescu, University of Texas at Dallas, USA

Solution by Vincelot Ravoson and Terence Ngo, Paris, France
Let F =∏cyc(a

2 + 3).
Suppose that a, b, c, d are positive. Hence, by AM-GM inequality we have :

F ≤ (
a2 + b2 + c2 + d2

4
+ 3)

4

,

and : a2 + b2 + c2 + d2 ≤ (a + b + c + d)2 = 42, so :

F ≤ (4 + 3)4 = 2401.

Suppose WLOG that d ≥ 0 and a, b, c are positive. Then : d2 ≤ 1, with equality iff d = −1, and : −1 ≤ d =
4 − (a + b + c), so : a + b + c ≤ 5 and : a2 + b2 + c2 ≤ (a + b + c)2 ≤ 52, so by AM-GM :

F ≤ (
a2 + b2 + c2

3
+ 3)

2

⋅ 4 ≤ (
52

3
+ 3) ⋅ 4 =

136

3
.

Suppose WLOG that : c, d ≤ 0 and a, b ≥ 0. Then: c2 + 3 ≤ 4, d2 + 4 ≤ 4, and : −2 ≤ c + d = 4 − (a + b), so :
a2 + b2 ≤ (a + b)2 ≤ 62, and by AM-GM we get that :

F ≤ (
62

2
+ 3) ⋅ 42 = 336.

Finally, suppose WLOG that a ≥ 0 and b, c, d ≥ 0. Then for all t ∈ {b, c, d}, t2+3 ≤ 4 and : −3 ≤ b+c+d = 4−a,
so a ≤ 7, and :

F ≤ (72 + 3) ⋅ 43 = 3328,

with equality if and only if a = 7 and b = c = d = −1 (with permutations).
In conclusion :

max
a,b,c,d≥−1

(a2 + 3)(b2 + 3)(c2 + 3)(d2 + 3) = 3328.

Also solved by Daniel Lasaosa, Pamplona, Spain; Ioannis D. Sfikas, Athens, Greece; Nicusor Zlota, Traian
Vuia Technical College, Focsani, Romania; Paolo Perfetti, Università degli studi di Tor Vergata Roma, Rome,
Italy; Albert Stadler, Herrliberg, Switzerland.
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S448. Let ABC be a triangle with area ∆. Prove that for any point P in the plane of the triangle

AP +BP +CP ≥ 2
4
√

3
√

∆.

Proposed by Nguyen Viet Hung, Hanoi University of Science, Vietnam

Solution by Daniel Lasaosa, Pamplona, Spain
If one of A,B,C is at least 120○, wlog A ≥ 120○, then the point P in the plane of ABC such that AP+BP+CP
is maximum is P = A, or AP +BP +CP = b + c. Moreover, ∆ = bc sinA

2 ≤ bc sin 120○

2 = bc
√
3

4 , and it suffices to
show that

b + c ≥
√

3bc,

always true and holding strictly since by the AM-GM inequality we have b + c ≥ 2
√
bc >

√
3bc.

If A,B,C ≤ 120○, then the point P in the plane of ABC such that AP +BP +CP is the Torricelli point,
and it is well known that AP + BP + CP = AA′ = BB′ = CC′, where BCA′,CAB′,ABC ′ are equilateral
triangles constructed outside of ABC. Therefore, using the Cosine Law, we have

(AP +BP +CP )
2
≥ AA′2

= AB2
+BA′2

− 2AB ⋅BA′ cos(B + 60○) =

= c2 + a2 − ca cosB +
√

3ca sinB =
a2 + b2 + c2

2
+ 2

√
3∆.

Squaring both sides of the proposed inequality, and using that ∆ = abc
4R where R is the circumradius of ABC,

it suffices to show that
R (a2 + b2 + c2) ≥

√
3abc.

Now, it is well known (or it can be proved using the Sine Law and trigonometric relations) that a2 + b2 + c2 ≤
9R2, or it suffices to show that

(a2 + b2 + c2)
3
≥ 27

3
√
a2b2c2,

which is true by the AM-GM inequality, and with equality iff a = b = c. The conclusion follows, and since
this last condition is also sufficient for all other equalities, equality holds in the proposed relation iff ABC is
equilateral and P is its center.

Also solved by Vincelot Ravoson and Terence Ngo, Paris, France; Jae Yong Park, The Lawrenceville
School, Lawrenceville, NJ, USA; Joehyun Kim, Cresskill, NJ, USA; Albert Stadler, Herrliberg, Switzerland;
AN-anduud Problem Solving Group, Ulaanbaatar, Mongolia; Ioannis D. Sfikas, Athens, Greece; Nicusor
Zlota, Traian Vuia Technical College, Focsani, Romania; Titu Zvonaru, Comănes,ti, Romania.
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S449. Find the maximum of
(

9b + 4c

a
− 6)(

9c + 4a

b
− 6)(

9a + 4b

c
− 6)

over all positive real numbers a, b, c.

Proposed by Titu Andreescu, University of Texas at Dallas, USA

Solution by the author
The maximum is 73, achieved for a = b = c. It suffices to show that

(9b + 4c − 6a)(9c + 4a − 6b)(9a + 4b − 6c) ≤ 73abc.

Let x = 9b + 4c − 6a, y = 9c + 4a − 6b, z = 9a + 4b − 6c. We have

2x + 3y = 35c, 2y + 3z = 35a, 2z + 3x = 35b.

This shows that maximum one of x, y, z can be nonpositive. The desired inequality is reduced to

xyz ≤
1

53
(2x + 3y)(2y + 3z)(2z + 3x).

If precisely one of x, y, z is nonpositive, then this is obvious. If x, y, z are all positive, then, by the AM-GM
Inequality,

5
√
x2y3 ≤

1

5
(x + x + y + y + y) =

1

5
(2x + 3y),

5
√
y2z3 ≤

1

5
(y + y + z + z + z) =

1

5
(2y + 3z),

5
√
z2x3 ≤

1

5
(z + z + x + x + x) =

1

5
(2z + 3x),

and, by multiplication, the conclusion follows.

Also solved by Paolo Perfetti, Università degli studi di Tor Vergata Roma, Rome, Italy; Daniel Lasaosa,
Pamplona, Spain; Guadalupe Russelle, University of the Philippines, Diliman, Quezon City, Philippines; Jae
Yong Park, The Lawrenceville School, Lawrenceville, NJ, USA; Joehyun Kim, Cresskill, NJ, USA; Albert
Stadler, Herrliberg, Switzerland; Ioannis D. Sfikas, Athens, Greece; Marin Chirciu and Octavian Stroe,
Colegiul National Zinca Golescu, Pitesti, Romania; Nicusor Zlota, Traian Vuia Technical College, Focsani,
Romania.
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S450. Let ABC be a triangle and D the foot of the altitude from B. The tangents in B and C to the
circumcircle of ABC meet in S. Let P be the intersection of BD and AS. We know that BP = PD.
Calculate ∠ABC.

Proposed by Mihaela Berindeanu, Bucharest, România

Solution by Andrea Fanchini, Cantù, Italy

We use barycentric coordinates with reference to the triangle ABC.

● Coordinates of points S,P .
The tangents in B and C to the circumcircle of ABC are

BBO∞⊥ ∶ c
2x + a2z = 0, CCO∞⊥ ∶ b

2x + a2y = 0

then point S is
S = BBO∞⊥ ∩CCO∞⊥ = (−a2 ∶ b2 ∶ c2)

The foot of the altitude from B is D(SC ∶ 0 ∶ SA), so we have

BD ∶ SAx − SCz = 0, AS ∶ c2y − b2z = 0

then point P is
P = BD ∩AS = (c2SC ∶ b2SA ∶ c

2SA)

● Distances BP,PD.

BP =
c2S

b(2SA + SB)
, PD =

SAS

b(2SA + SB)

now if BP = PD then c2 = SA, therefore SB = 0 that is ∠ABC = 90○.

Also solved by Daniel Lasaosa, Pamplona, Spain; Mihai Miculita, Oradea, Romania; Dionysios Adamo-
poulos, 3rd High School, Pyrgos, Greece; AN-anduud Problem Solving Group, Ulaanbaatar, Mongolia; Daniel
Ghenghea; Ioannis D. Sfikas, Athens, Greece; Miguel Amengual Covas, Cala Figuera, Mallorca, Spain; Albert
Stadler, Herrliberg, Switzerland; Telemachus Baltsavias, Kerameies Junior High School, Kefalonia, Greece;
Titu Zvonaru, Comănes,ti, Romania.
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Undergraduate problems

U445. Let a, b, c be the roots of the equations x3 + px + q = 0, where q ≠ 0. Evaluate the sum

a2

b
+
b2

c
+
c2

a

in terms of p and q.

Proposed by Nguyen Viet Hung, Hanoi University of Science, Vietnam

Solution by Oana Prajitura, University of Pittsburgh, PA, USA
By Vieta’s relations,

a + b + c = 0 ab + bc + ca = p abc = −q.

Also, since a, b, c are roots of the equation,

a3 = −pa − q b3 = −pb − q c3 = −pc − q.

a2

b
+
b2

c
+
c2

a
=
a3c + b3a + c3b

abc
=

(−pa − q)c + (−pb − q)a + (−pc − q)b

−q

=
−p(ab + bc + ca) − q(a + b + c)

−q
=
p2

q

Also solved by Daniel Lasaosa, Pamplona, Spain; Vincelot Ravoson and Terence Ngo, Paris, France;
Jae Yong Park, The Lawrenceville School, Lawrenceville, NJ, USA; Joehyun Kim, Cresskill, NJ, USA;
Anderson Torres, Sao Paulo, Brazil; Albert Stadler, Herrliberg, Switzerland; AN-anduud Problem Solving
Group, Ulaanbaatar, Mongolia; Arkady Alt, San Jose, CA, USA; G. C. Greubel, Newport News, VA, USA;
Ioan Viorel Codreanu, Satulung, Maramures, Romania; Ioannis D. Sfikas, Athens, Greece; Marin Chirciu,
Colegiul National Zinca Golescu, Pitesti, Romania; Nicusor Zlota, Traian Vuia Technical College, Focsani,
Romania; Paolo Perfetti, Universitá degli studi di Tor Vergata Roma, Rome, Italy; George Theodoropoulos,
2nd High School of Agrinio, Greece; Titu Zvonaru, Comănes,ti, Romania; Juan Jose Granier, Universidad
de Chile, Santiago, Chile.
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U446. Find the minimum of max{∣1 + z∣ , ∣1 + z2∣}, when z runs over all complex numbers.

Proposed by Robert Bosch, USA

Solution by Daniel Lasaosa, Pamplona, Spain
Let z = x + iy, and denote

f(x, y) = ∣1 + z∣2 = (1 + x)2 + y2,

g(x, y) = ∣1 + z2∣
2
= (1 + x2 − y2)

2
+ 4x2y2,

and h(x, y) = max{f(x, y), g(x, y)}. Note first that f, g are both differentiable, and both grow without
bounds for any arbitrarily large x or y, hence the absolute minimum of h is necessarily also a local minimum.
At this minimum, we may have either f > g and h = f , or f < g and h = g, or f = g = h.

If h = f > g, then f = h at a neighborhood of the minimum, or f has a local minimum at the absolute
minimum of h. Now,

∂f(x, y)

∂x
= 2(1 + x),

∂f(x, y)

∂y
= 2y,

∂2f(x, y)

∂x∂y
= 0,

∂2f(x, y)

∂x2
= 2,

∂2f(x, y)

∂y2
= 2,

or a local minimum of f occurs iff x = −1 and y = 0, for h = f = 0. But then g > f , contradiction. Hence the
minimum of h does not occur in this case.

If f < g = h, then g has a local minimum at the minimum of h. Considering g as a function of x2 = u and
y2 = v, we have

∂g(u, v)

∂u
= 2 (1 + u + v) ,

∂g(u, v)

∂v
= 2 (u + v − 1) ,

∂2g(u, v)

∂u∂v
=
∂2g(u, v)

∂u2
=
∂2g(u, v)

∂v2
= 2,

or a local minimum of g occurs iff u = 0 for x = 0, and v = 1 for y = ±1, yielding g = 0. But then f > g,
contradiction. Hence the minimum of h does not occur in this case.

If f = g = h, let us find when f(x, y) = g(x, y), considering it as a quadratic equation in v = y2:

v2 + v(2x2 − 3) + x4 + x2 − 2x = 0, v =
3 − 2x2 ±

√
9 + 8x − 16x2

2
.

Note however that not all values of x are possible for f = g, indeed x needs to satisfy (4x− 1)2 ≤ 10, and the
resulting value of v needs to be nonnegative. Inserting these expressions for v = y2 in both f, g, both collapse
into

h+(x) = 2x +
5

2
+

√
9 + 8x − 16x2

2
, h−(x) = 2x +

5

2
−

√
9 + 8x − 16x2

2
.
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The derivative of the first expression with respect to x yields

h′+(x) = 2 +
2 − 8x

√
9 + 8x − 16x2

,

which becomes zero when 4x2 − 2x − 1 = 0 and x > 1
4 , ie when x = 1+

√
5

4 , or after calculating the second
derivative of h+ with respect to x, evaluating it at x = 1+

√
5

4 , and finding it to be positive, the minimum of
h in this case is found to be

min{h+} = 3,

occurring for x = 1+
√
5

4 , which yields indeed a positive value of v. The derivative of the second expression
with respect to x yields

h′−(x) = 2 −
2 − 8x

√
9 + 8x − 16x2

,

which becomes zero when 4x2 − 2x − 1 = 0 and x < 1
4 , ie when x = 1−

√
5

4 , or the minimum of h in this case is
found to be

min{h−} = 3 −
√

5,

occurring when x = 1−
√
5

4 , which yields indeed a positive value of v. It follows that the minimum of h(x, y)

is 3 −
√

5, and occurs when x = 1−
√
5

4 and y = ±
√
3(1−

√
5)

4 , or the minimum of the proposed expression is

√

3 −
√

5 =

√
5 − 1
√

2
,

which occurs for

z = (1 ± i
√

3)
1 −

√
5

4
.

Also solved by Juan Jose Granier, Universidad de Chile, Santiago, Chile; AN-anduud Problem Solving
Group, Ulaanbaatar, Mongolia; Nicusor Zlota, Traian Vuia Technical College, Focsani, Romania; Albert
Stadler, Herrliberg, Switzerland.
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U447. If Fn is the nth Fibonacci number, then for fixed p show that

n

∑
k=1

(
n

k
)F kp F

n−k
p−1 Fk = Fpn.

Tarit Goswami, West Bengal, India

Solution by AN-anduud Problem Solving Group, Ulaanbaatar, Mongolia

Let ϕ =
1 +

√
5

2
. Using that

ϕm = Fm−1 + Fmϕ

for positive integer m. Then we have

Fpn ⋅ ϕ + Fpn−1 = ϕ
pn

= (ϕp)n

= (Fp ⋅ ϕ + Fp−1)
n

=
n

∑
k=1

(
n

k
)(Fpϕ)

kFn−kp−1

=
n

∑
k=1

(
n

k
)F kp F

n−k
p−1 (Fk ⋅ ϕ + Fk−1)

= (
n

∑
k=1

(
n

k
)F kp F

n−k
p−1 Fk)ϕ +

n

∑
k=1

(
n

k
)F kp F

n−k
p−1 Fk−1.

Hence we get

Fpn =
n

∑
k=1

(
n

k
)F kp F

n−k
p−1 Fk.

Also solved by Vincelot Ravoson and Terence Ngo, Paris, France; Henry Ricardo, Westchester Area Math
Circle, NY, USA; Albert Stadler, Herrliberg, Switzerland; Ángel Plaza, University of Las Palmas de Gran
Canaria, Spain; G. C. Greubel, Newport News, VA, USA; Ioannis D. Sfikas, Athens, Greece; Guadalupe
Russelle, University of the Philippines, Diliman, Quezon City, Philippines.
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U448. Let p ≥ 5 be a prime number. Prove that the polynomial

2Xp
− p3pX + p2

is irreducible in Z[X].

Proposed by Navid Safaei, Sharif University of Technology, Tehran, Iran

Solution by the author
Assume the contrary: 2xp−p ⋅3px+p2 = f(x) ⋅g(x), where f(x), g(x) are polynomials with integer coefficients.
Denote deg f(x) = d,deg g(x) = e. Because not all the coefficients of xp − p ⋅ 3px + p2 are divisible by p, we
find that the same statement holds true for the polynomials f(x), g(x). That is, one can write

f(x) = xsf1(x) + pf2(x)

and
g(x) = xcg1(x) + pg2(x)

where e, c are the least monomials in f(x), g(x) such that their coefficients are not divisible by p. Therefore,
the constant terms of f1(x), g1(x) are not divisible by p. Hence,

f(x)g(x) = xc+sf1(x)g1(x) + p (x
sf1(x)g2(x) + x

cg1(x)f2(x)) + p
2f2(x)g2(x).

It is easy to find that, c + s = p. Thus, c = e, s = d. Hence,

f(x) = adx
d
+ pf2(x), g(x) = bex

e
+ pg2(x)

This implies that,

2xp − p ⋅ 3px + p2 = adbex
p
+ p (adx

dg2(x) + bex
ef2(x)) + p

2f2(x)g2(x)

Therefore, comparing the coefficients of x, one can find that min(d, e) ≤ 1. Therefore, one of f(x), g(x) must
be linear. In this case, the polynomial 2xp − p ⋅ 3px + p2 must have a rational root. Using the Rational Root

Theorem, one can find that, this root must be of the form of ±p,±p2 or ±
p

2
,±
p2

2
. Now, we consider four cases:

Case 1: 2(±p)p ∓ p23p + p2 = 0, then ±2pp−2 ∓ 3p + 1 = 0. Then, by Fermat’s little theorem, we find that p
must divide 2. Absurd.

Case 2: 2(±p)2p ∓ p33p + p2 = 0, then ±2p2p−2 ∓ p3p + 1 = 0, which is clearly wrong.

Case 3: 2(±
p

2
)
p

∓
p2

2
⋅ 3p + p2 = 0, then ±

pp−2

2p−1
∓

3p

2
+ 1 = 0. Therefore,

±pp−2 = ±2p−23p − 2p−1

Then, by Fermat’s little theorem, we find that p must divide either 1 or 5. If p = 5, then

−53 = −23 ⋅ 35 − 24.

Absurd.

Case 4: 2(±
p

2
)
2p

∓
p3

2
⋅ 3p + p2 = 0, then ±

p2p−2

22p−1
∓
p3p

2
+ 1 = 0. Contradiction.

Also solved by Vincelot Ravoson and Terence Ngo, Paris, France; AN-anduud Problem Solving Group,
Ulaanbaatar, Mongolia.
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U449. Evaluate

∫

π/4

0
ln

⎛

⎝

tan (x
3
)

tan2 x

⎞

⎠
dx.

Proposed by Paolo Perfetti, Università degli studi di Tor Vergata Roma, Rome, Italy

Solution by G. C. Greubel, Newport News, VA, USA
First note that

∫ ln(tanx)dx =
i

2
(Li2(i tanx) −Li2(−i tanx))

+ ln(
1 − i tanx

1 + i tanx
) ln(tanx) (1)

and that

∫

π/4

0
ln(tanx)dx = −G (2)

∫

π/12

0
ln(tanx)dx = −

2G

3
, (3)

where Li2(x) is the diligarithm function and G is Catalan’s constant. Now, the integral in question can be
seen as:

I = ∫
π/4

0
ln

⎛

⎝

tan (x
3
)

tan2 x

⎞

⎠
dx

= ∫

π/4

0
ln(tan(

x

3
)) dx − 2 ∫

π/4

0
ln(tanx)dx

= 3 ∫
π/12

0
ln(tanx)dx − 2 ∫

π/4

0
ln(tanx)dx

= 3 (
−2G

3
) − 2(−G) = 0.

This leads to

∫

π/4

0
ln

⎛

⎝

tan (x
3
)

tan2 x

⎞

⎠
dx = 0.

Also solved by Albert Stadler, Herrliberg, Switzerland; Ioannis D. Sfikas, Athens, Greece; Juan Jose
Granier, Universidad de Chile, Santiago, Chile.
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U450. Let P be a nonconstant polynomial with integer coefficients. Prove that for each positive integer n
there are pairwise relatively prime positive integers k1, k2, . . . , kn such that k1k2⋯kn = ∣P (m)∣ for some
positive integer m.

Proposed by Titu Andreescu, University of Texas at Dallas, USA

Solution by AN-anduud Problem Solving Group, Ulaanbaatar, Mongolia
By Schur’s theorem exists distinct prime numbers p1, p2, . . . , pn and positive integerm1,m2, . . . ,mn such that

P (m1) ≡ 0 (mod p1)

P (m2) ≡ 0 (mod p2)

⋮ ⋮ ⋮

P (mn) ≡ 0 (mod pn).

By the Chinese Remainder theorem, exist positive integer m such that

m ≡m1 (mod p1)

m ≡m2 (mod p2)

⋮ ⋮ ⋮

m ≡mn (mod pn).

We have ∀i ∈ {1,2, . . . , n} ∶ m ≡mi (mod pi) hence we get

P (m) ≡ P (mi) ≡ 0 (mod pi).

Thus p1p2 . . . pn is divide P (m). Hence we get

∣P (m)∣ = pα1
1 pα2

2 . . . pαn
n ⋅A,

where α1, α2, . . . , αn > 0 and A ∈ N. Choosing

k1 = p
α1
1 , k2 = p

α2
2 , . . . , kn−1 = p

αn−1
n−1 , kn = p

αn
n ⋅A

then we have i ≠ j that gives (ki, kj) = 1 and

k1k2 ⋅ . . . ⋅ kn = ∣P (m)∣.

Also solved by Daniel Lasaosa, Pamplona, Spain; Anderson Torres, Sao Paulo, Brazil; Juan Jose Granier,
Universidad de Chile, Santiago, Chile; Albert Stadler, Herrliberg, Switzerland.
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Olympiad problems

O445. Let a, b, c be positive real numbers such that a + b + c = 3. Prove that

8

√
a3 + b3 + c3

3
≤

3

ab + bc + ca
.

Proposed by Nguyen Viet Hung, Hanoi University of Science, Vietnam

Solution by Daniel Lasaosa, Pamplona, Spain
Using the well known relation a3+b3+c3−3abc = (a+b+c)3−3(ab+bc+ca)(a+b+c), the proposed inequality
rewrites as

(
ab + bc + ca

3
)

8

(9 − 3(ab + bc + ca) + abc) ≤ 1.

Using the weighted AM-GM inequality, it then suffices to show that

8
ab + bc + ca

3
+ 9 − 3(ab + bc + ca) + abc ≤ 9, ab + bc + ca ≥ 3abc.

Multiplying both sides by a + b + c = 3, it suffices to show that

(a + b + c)(ab + bc + ca) ≥ 9abc,

which clearly holds by the AM-GM inequality applied to a, b, c and to ab, bc, ca, and equality holds iff a = b = c.
The conclusion follows, the necessary condition a = b = c = 1 for equality in the last step also being clearly
sufficient for equality in the proposed inequality.

Also solved by Vincelot Ravoson and Terence Ngo, Paris, France; Albert Stadler, Herrliberg, Switzerland;
AN-anduud Problem Solving Group, Ulaanbaatar, Mongolia; Ioan Viorel Codreanu, Satulung, Maramures,
Romania; Ioannis D. Sfikas, Athens, Greece; Marin Chirciu and Octavian Stroe, Colegiul National Zinca
Golescu, Pitesti, Romania; Nguyen Ngoc Tu, Ha Giang, Vietnam; Nicusor Zlota, Traian Vuia Technical
College, Focsani, Romania; Paolo Perfetti, Università degli studi di Tor Vergata Roma, Rome, Italy.
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O446. Prove that in any triangle ABC the following inequality holds:

sin
A

2
+ sin

B

2
+ sin

B

2
≤

√

2 +
r

2R

Proposed by Dragoljub Miloševići, Gornji Milanovac, Serbia

Solution by Nikos Kalapodis, Patras, Greece
Let a, b, c be the sides of triangle ABC. Using the well-known substitution a = y + z, b = z + x, c = x + y we
have that

sin
A

2
=

√
(s − b)(s − c)

bc
=

√
yz

(x + y)(x + z)

r =

√
(s − a)(s − b)(s − c)

s
=

√
xyz

x + y + z

and
R =

abc

4
√
s(s − a)(s − b)(s − c)

=
(x + y)(y + z)(z + x)

4
√
xyz(x + y + z)

.

Therefore the given inequality becomes
√

yz

(x + y)(x + z)
+

√
zx

(y + z)(y + x)
+

√
xy

(z + x)(z + y)
≤

√

2 +
2xyz

(x + y)(y + z)(z + x)

or √
yz(y + z) +

√
zx(z + x) +

√
xy(x + y) ≤

√
2[(x + y)(y + z)(z + x) + xyz]

√
yz(y + z) +

√
zx(z + x) +

√
xy(x + y) ≤

√
2(x + y + z)(xy + yz + zx),

which follows by the Cauchy-Schwarz inequality. Equality holds iff x = y = z, i.e. a = b = c.

Also solved by Arkady Alt, San Jose, CA, USA; Paolo Perfetti, Università degli studi di Tor Vergata
Roma, Rome, Italy; Scott H. Brown, Auburn University Montgomery, Montgomery, AL, USA; AN-anduud
Problem Solving Group, Ulaanbaatar, Mongolia; Ioan Viorel Codreanu, Satulung, Maramures, Romania;
Marin Chirciu, Colegiul National Zinca Golescu, Pitesti, Romania; Nicusor Zlota, Traian Vuia Technical
College, Focsani, Romania; Albert Stadler, Herrliberg, Switzerland; Titu Zvonaru, Comănes,ti, Romania.
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O447. Let a, b, c be nonnegative real numbers such that a2 + b2 + c2 ≥ a3 + b3 + c3. Prove that

a3b3 + b3c3 + c3a3 ≤ a2b2 + b2c2 + c2a2

Proposed by An Zhenping, Xianyang Normal University, China

Solution by Albert Stadler, Herrliberg, Switzerland
It is sufficient to prove that

a3b3 + b3c3 + c3a3 ≤ (
a3 + b3 + c3

a2 + b2 + c2
)

2

(a2b2 + b2c2 + c2a2),

which is equivalent to (after clearing denominators)

∑
sym

a7b3 +
1

2
∑
sym

a4b3c3 ≤ ∑
sym

a8b2 +
1

2
∑
sym

a6b2c2.

However this inequality is true, since by Muirhead’s inequality,

∑
sym

a7b3 ≤ ∑
sym

a8b2, and ∑
sym

a4b3c3 ≤ ∑
sym

a6b2c2.

Also solved by AN-anduud Problem Solving Group, Ulaanbaatar, Mongolia; Ioannis D. Sfikas, Athens,
Greece; Paolo Perfetti, Università degli studi di Tor Vergata Roma, Rome, Italy; Titu Zvonaru, Comănes,ti,
Romania.
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O448. Prove that for any positive integers m and n there are m consecutive positive integer numbers such
that each number has at least n divisors.

Proposed by Anton Vassilyev, Astana, Kazakhstan

Solution by Joel Schlosberg, Bayside, NY, USA
Let pk be the kth prime, and for any positive integer j let

Pj =
jn

∏
k=(j−1)n+1

pk.

For j1 ≠ j2, Pj1 and Pj2 are relatively prime. Therefore, by the Chinese Remainder Theorem there exists a
positive integer M such that for all j ∈ {1, . . . ,m},

M ≡ −j (mod Pj).

Then M + 1, . . . ,M +m is a sequence of m consecutive integers such that M + j is divisible by Pj and thus
has at least the n divisors p(j−1)n+1, . . . , pjn.

Also solved by Daniel Lasaosa, Pamplona, Spain; Takuji Imaiida, Fujisawa, Kanagawa, Japan; Ander-
son Torres, Sao Paulo, Brazil; AN-anduud Problem Solving Group, Ulaanbaatar, Mongolia, Albert Stadler,
Herrliberg, Switzerland.
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O449. At the AwesomeMath Summer Camp, a teacher wants to challenge his 102 students. He gives them 19
green t-shirts, 25 red t-shirts, 28 purple t-shirts and 30 blue t-shirts, a t-shirt to each student. Then,
he calls three students randomly: if they have a t-shirt with different colors, they must wear a t-shirt
of the remaining color and must solve a problem given by the teacher. Is it possible that after some
time all the students have all the t-shirts of the same color? (Assume that there are sufficient t-shirts
for each color in the store).

Proposed by Alessandro Ventullo, Milan, Italy

Solution by Daniel Lasaosa, Pamplona, Spain
Note that at each step, the parity of the number of t-shirts of each color changes, because either exactly
one t-shirt of that color is removed, or exactly three t-shirts of that color are added. Therefore, since at
the beginning there are two colors with an odd number of t-shirts, and two colors with an even number of
t-shirts, at each step in the process there will be two colors with an odd number of t-shirts, and two colors
with an even number of t-shirts. The desired final situation has all four numbers of t-shirts of each colors
even (three 0, one 102), and cannot thus be obtained.

Also solved by Takuji Imaiida, Fujisawa, Kanagawa, Japan; AN-anduud Problem Solving Group, Ulaan-
baatar, Mongolia; Joel Schlosberg, Bayside, NY, USA; Paraskevi-Andrianna Maroutsou, Charters Sixth
Form, Sunningdale, England, UK; Albert Stadler, Herrliberg, Switzerland.
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O450. A computer had randomly assigned all labels from 1 through 64 to an 8 × 8 electronic board. Then it
did it also randomly for the second time. Let nk be the label of the square that had been originally
assigned k. Knowing that n17 = 18, find the probability that

∣n1 − 1∣ + ∣n2 − 2∣ + ... + ∣n64 − 64∣ = 2018.

Proposed by Titu Andreescu, University of Texas at Dallas, USA

Solution by the author
Without the restriction n17 = 18 the maximum of ∣n1 − 1∣ + ∣n2 − 2∣ + ... + ∣n64 − 64∣ is

(−1 − 1 − 2 − 2 − ... − 32 − 32) + (33 + 33 + 34 + 34 + ... + 64 + 64) = 2048,

achieved if and only if {n1, n2, ..., n32} = {33,34, ...,64} and {n33, n34, ..., n64} = {1,2, ...,32}.
The swap between −18 and 33 with −33 and 18 lowers the sum to exactly 2048 − 2 × 15 = 2018.
The value 33 must be assumed by some nk, with k ∈ {33,34, ...,64}, implying

{n33, n34, ..., n64} ∖ {k} = {1,2, ...,32} ∖ {18}.

This could be done in 32 × (31!) ways. Independently,

{n1, n2, ..., n32} ∖ {17} = {34,35, ...,64}.

Hence the desired probability is 32 × (31!)(31!)/64! = 1
32×(64

32
)
.

Also solved by AN-anduud Problem Solving Group, Ulaanbaatar, Mongolia.
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