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Preface

Combinatorics is a fascinating branch of mathematics centered around
counting various objects and sets. Counting problems make regular appear-
ances on middle and high school mathematics competitions despite the fact
that combinatorics is generally covered only very briefly in high school math
courses. This is not, however, because combinatorics requires higher level
math as a prerequisite; indeed, many counting problems are accessible to any-
one with a solid background in arithmetic and some basic algebra.

This book gives students a chance to explore some introductory to inter-
mediate topics in combinatorics. We include chapters featuring tools for solv-
ing counting problems, proof techniques, and more to give students a broad
foundation to build on. It is worth noting that some sections of this book
are significantly more challenging than others. In particular, the chapters on
Invariants, Counting in more than one way, and Generating functions cover
topics that are considered fairly advanced; readers should not be discouraged
if they do not immediately grasp these concepts. Though counting problems in
particular are accessible to anyone, that does not mean they are trivial. One
of the trickiest aspects of solving a counting problem is determining which
tool or trick should be used. To help readers become accustomed to dealing
with these subtleties, each section includes several example problems of vary-
ing di�culty with solutions to demonstrate how the di↵erent techniques may
be applied in practice.

Following these topic-based segments we have included several introduc-
tory and advanced problems for students to tackle by themselves. These were
carefully selected to enable the reader to further hone their problem solving
skills based on the material presented in the chapters. Students can check
their work in the final part of this book, which includes detailed solutions to
these problems.

Several of the problems that appear in this book are pulled from various
mathematics competitions worldwide. We would like to express our gratitude
to the many writers who have contributed to these contests and provided
us with such a rich selection of exercises. We would also like to thank Dr.
Titu Andreescu for giving us the opportunity and encouragement to write
this book and Dr. Richard Stong, Dr. Branislav Kisacanin, and Dr. Walter
Stromquist for their thoughtful feedback, which helped us shape this text to
be the absolute best it could be.

We hope you enjoy the problems!

Elizabeth “Lizard” Reiland
Vlad Matei
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Chapter 1

Counting Basics

Before we jump into counting, we will go over some set theory definitions
and notation that is important to our study of combinatorics. These are
common terms that appear throughout the mathematical literature, so it is
good to learn and remember them.

Definition 1. A set is a collection of distinct elements whose order is not
important. We can specify a set by listing its elements such as {1, 2, 4, 8, 16} or
{3, 5, 7, . . . , 19}. Notice that our definition means that, for example, {1, 2, 4},
{2, 4, 1}, and even {1, 1, 2, 2, 4} are exactly the same set.

We can also use set builder notation where we specify a condition used to
determine which elements belong to the set such as {x | 1 < x < 17, x is an
integer}. The bar | can be read as “such that,” so this set is all values x such
that x is an integer and 1 < x < 17. Thus this set is simply {2, 3, . . . , 16}.
Another example of set builder notation is {(x, y) | x and y are real numbers,
y = 3x + 4}. Note that this set contains an infinite number of ordered pairs
(x, y).

• The empty set is the set which contains no elements. We denote it as
{ } or ;.

• The notation x 2 A (read “x is in A” or “x is an element of A”) means
that the element x is included in the set A. We use the notation y /2 A
(read “y is not in A” or “y is not an element of A”) to indicate that y is
not included in the set A.

• We say that a set A is a subset of a set B (denoted A ✓ B) if every
element of A is an element of B (i.e., x 2 A implies x 2 B).

• Two sets A and B are equal (denoted A = B) if they contain exactly
the same elements. (One common way to prove A = B is to show that
A ✓ B and B ✓ A. Keep this in mind!)
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• The union of two sets A and B (denoted A[B) is the set of all elements
in either A or B: {x | x 2 A or x 2 B}. The intersection of A and B
(denoted A \ B) is the set of all elements belonging to both A and B:
{x | x 2 A and x 2 B}. These definitions can be extended to more
than two sets in the intuitive way:

S1 [ S2 [ · · · [ Sk = {x | x 2 Si for some i, 1  i  k}

S1 \ S2 \ · · · \ Sk = {x | x 2 Si for all i, 1  i  k}

• We say two sets A and B are disjoint if they have no elements in common
(i.e., if A \B = ;).

• The set di↵erence of the set A and the set B (denoted A\B) is the set
of elements that are in A but not in B. This notation is used even when
B is not a subset of A; for example, {1, 2, 3} \ {3, 4} is {1, 2}.

• If we have a universal set U which contains all of the objects we are
interested in, we can define the complement of a set A (denoted Ac) as
the collection of elements not in A (i.e., Ac = U\A). For example, if we
are working with the set of integers, the complement of the set of even
numbers would be the set of odd numbers. (Note: we have to have some
universal set in order for the idea of a complement to make sense!)

• The cardinality or size of a set A (denoted |A|) is the number of elements
in that set.

Though these definitions may seem straightforward, there are some sur-
prisingly subtle issues in set theory. It is possible for elements of a set to be
sets in their own right. For example, one could take the set A of all subsets
of {1, 2, 3} (called the power set or A). We have

A = {;, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}.

The elements of A are sets. One could iterate this idea to build sets whose
elements are sets of sets, and so on. Another interesting example is the set
B = {;}. Notice that B is not the empty set, but rather the set containing
the empty set. The size of the empty set is |;| = 0, but we have |B| = 1.

One might then worry about whether a set A could contain itself as an
element, A 2 A. To avoid this one might try to restrict to the set of all sets
that do not contain themselves, B = {A : A /2 A}. Thinking about whether
B contains itself will lead you to what is known as Russell’s paradox. These
issues can be fun but will not be relevant to this text, since our sets will be
explicitly defined and usually finite.
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As we start thinking about counting, there are two essential rules that will
show up in almost every problem you encounter. Once you’ve done a bit of
counting, you’ll find yourself using these without even thinking about them.
We will state these principles formally in a moment, but first we will examine
a simple example.

Example 1. Suppose we are at a clothing store which o↵ers 16 di↵erent shirts,
9 di↵erent pairs of pants, and 3 di↵erent pairs of shoes. How many ways are
there to purchase an article of clothing?

Before we discuss the solution to this exercise, note that Example 1 il-
lustrates an important fact about combinatorics problems. It is more fun to
phrase combinatorics problems in simple English, and this is the way you will
often see them. However, English is not as precise a language as mathematics,
and we generally do not want to include long lists of disclaimers and expla-
nations to make the problems technically precise since this would defeat the
point of using simple English.

One of the first steps you should take when approaching a combinatorics
problem is to decide how you want to interpret the English. For instance, in
solving Example 1, we will implicitly assume that the only types of articles of
clothing are the three mentioned (shirts, pants, and shoes) and that shoes have
to be purchased in a pair. Mathematicians generally agree on how to interpret
problems, and this is one of the things you will pick up going through the
examples. If you are uncertain how to interpret a problem statement and are
unable to ask someone to clarify, make your best attempt at an appropriate
interpretation and be sure to note the assumptions you have made in your
solution.

Having made these notes, let us now solve Example 1.

Solution. Because an article of clothing is either a shirt, a pair of pants, or a
pair of shoes we can simply add up the number of each type of clothes to find
16 + 9 + 3 = 28 possible ways to buy an article of clothing.

The counting in this exercise was fairly straightforward, but it illustrates
an application of the Sum Rule, a generalized principle which can be used to
solve much more complicated problems. The formal statement of the Sum
Rule is as follows:

Theorem 1. (Sum Rule) If A1, A2, . . . , An are pairwise disjoint sets (i.e., if
no pair of sets have elements in common), then

|A1 [A2 [ · · · [An| = |A1|+ |A2|+ · · ·+ |An|.
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While this may seem like a lot of fancy notation, in practice this rule just
tells us that if we are counting the possible ways to pick an object from one
of several di↵erent sets that do not overlap, we just need to add up the sizes
of the individual sets. If the sets do overlap, we will need to be a bit more
careful; we discuss how to deal with this possibility in the inclusion exclusion
section. Let us give a simple example of applying this principle

Example 2. Let X = {1, 2, . . . , 200}. We define

S = {(a, b, c) | a, b, c 2 X, a < b and a < c}.

How many elements does S have?

Solution. Note that we can split S up into disjoint set Ak where k is the value
of a and 1  k  199. Note that since b > k and c > k we have 200�k choices
for b and 200 � k choices for c. Thus |Ak| = (200 � k)2. Using the addition
principle we obtain |S|.

Example 3. Suppose we are at a clothing store which o↵ers 16 di↵erent shirts
and 9 di↵erent pairs of pants. How many ways are there to purchase an outfit
consisting of one shirt and one pair of pants?

Solution. To help facilitate our counting, let us build a table. Each row of
the table will represent a particular shirt, whereas each column will represent
a particular pair of pants. A particular cell in the table will correspond to
the outfit consisting of the shirt indicated by the row and the pair of pants
indicated by the column of that cell. Since each cell will represent one distinct
outfit, and every outfit appears in exactly one cell, our number of outfits is
simply equal to the number of cells in our table. Since we have 16 shirts and
9 pairs of pants, there are 16 · 9 = 144 cells in our table, and thus 144 possible
outfits we could buy.

Notice that if we wanted to create an oufit consisting of a shirt and a
pair of pants and a pair of shoes, we could expand on this idea to make
a three dimensional table with one coordinate representing shirts, a second
representing pants, and the last representing shoes. Similarly, if we had n
selections to make, we could imagine counting cells in an n-dimensional table.
This brings us to our other basic rule:

Theorem 2. (Product Rule) If we have a sequence of n choices to make with
X1 possibilities for the first choice, X2 possibilities for the second choice, and
so on up to Xn choices for the nth choice, there are a total of X1 ·X2 · . . . ·Xn

ways to make our choices.
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For most problems we will apply both the Sum Rule and Product Rule to
get us to our final solution. By using the Sum Rule we can break problems into
a collection of cases where each case is relatively simple to count (generally by
employing the Product Rule) as illustrated in the next example.

Example 4. How many three-digit numbers have exactly one even digit?

Solution. We will look at three di↵erent cases here: the case where the first
digit is even and the other two are odd, the case where the middle digit is
even and the other two are odd, and the case where the last digit is even and
the other two are odd. Since these cases do not overlap, we can count each
individually, then apply the Sum Rule to get our final answer.

We can think of creating a three-digit number as a series of three steps:
choosing the first digit, choosing the second digit, and choosing the final digit.
In the case where the first digit is even and the other two are odd, there are 4
choices for the first digit (2, 4, 6, 8) since it must be even and cannot be zero
(otherwise we would not have a three-digit number). Since the second and
third digits are both odd, there are 5 possibilities for each (1, 3, 5, 7, 9). Thus
the Product Rule tells us there are 4 ·5 ·5 three-digit numbers fitting this case.
In the case where the middle digit is even and the other two are odd, every
digit has 5 possibilities: 1, 3, 5, 7, 9 for the odd digits and 0, 2, 4, 6, 8 for the
even digit. Overall then, there are 5 · 5 · 5 three-digit numbers in this case.
Similarly, there are 5 · 5 · 5 numbers satisfying the case where the last digit is
even and the other two are odd. Putting these three cases together using the
Sum Rule, we have 4 · 5 · 5 + 5 · 5 · 5 + 5 · 5 · 5 = 350 three-digit numbers with
exactly one even digit.

One more basic but very useful technique to keep in mind is complementary
counting. Suppose we are interested in determining the size of a set A. If we
have a finite universal set U , we know by the Sum Rule that |A|+ |Ac

| = |U |.
Rearranging, we find |A| = |U |� |Ac

|. We can take advantage of this to help
us determine the size of A. In particular, we can determine the size of our
universal set and the size of the complement of A, then subtract. In some
cases this may be significantly easier than trying to directly count A. If you
see the words “at least” in a problem, complementary counting will often be
a good method to consider.

Example 5. How many four-digit positive integers have at least one digits
that is a 2 or a 3?

(2006 AMC 10A)

Solution. Let’s first count the total number of four-digit positive integers. The
first digit must be from 1 to 9, so we have 9 choices. For each of the three
remaining digits, we need a value from 0 to 9 so there are 10 choices each.
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Thus in total there are 9 · 10 · 10 · 10 = 9 · 103 = 9000 four-digit positive
integers.

Next we count how many four-digit positive integers DO NOT contain a
2 or a 3. Then we have 7 choices for our first digit (1,4,5,6,7,8, or 9) and 8 for
the remaining three-digits. This gives a total of 7 · 83 four-digit integers not
containing a 2 or a 3. Subtracting this from our total, we conclude that there
are 9000� 7 · 83 = 5416 four-digit positive integers that have at least one digit
that is a 2 or a 3.

Let’s look at some examples of problems making use of the techniques
we’ve learned thus far.

Example 6. How many subsets of {1, 2, . . . , n} are there? (Note: This quan-
tity will come up frequently in problems, so it’s a useful fact to remember.)

Solution. Consider an element i (1  i  n). As we construct a subset S, we
have two choices for i: Either it is in S or it is not in S. Since we must make
this choice for each of the n elements, by the Product Rule there are 2n total
subsets of {1, 2, . . . , n}.

Example 7. How many subsets S of {1, 2, . . . , n} are there such that |S| is
odd?

Solution. For each element i (1  i  n� 1) we have two choices: Either i is
in S or it is not in S. At this point, we consider |S|. If |S| is odd, we must not
include n in S. On the other hand, if |S| is even (so far), we have to include
n in S to satisfy the condition that |S| is odd. In either case, we have only
one choice for what to do with n. By the Product Rule, this implies there are
2n�1

· 1 = 2n�1 subsets S of {1, 2, . . . , n} are there such that |S| is odd.

Notice that this solution does not work when n = 0; certainly there are
not 2�1 subsets of {} with an odd number of elements. It is good to get in
the habit of watching out for cases like this. If you are writing a solution on
an exam, make sure you say that you are assuming n > 0.

Example 8. A dessert chef prepares the dessert for every day of a week
starting with Sunday. The dessert each day is either cake, pie, ice cream, or
pudding. The same dessert may not be served two days in a row. There must
be cake on Friday because of a birthday. How many di↵erent dessert menus
for the week are possible?

(2012 AMC 12B)

Solution. We start with Friday, since we know cake must be served that day.
This implies that on Saturday, the dessert served cannot be cake, so we have 3
choices for that day’s dessert. Similarly when we work backwards from Friday
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to Thursday, we see we have 3 choices for the dessert on Thursday (anything
but cake). Then Wednesday we may select any of the 3 desserts not served
Thursday, and so on back to Sunday. Since we have 3 choices for each day
(aside from Friday), by the Product Rule we have 36 = 729 possible menus.

Note that there is something slightly subtle about our use of the Product
Rule in Example 7. The Product Rule only requires that at each step in
our chain of choices that we have the same number of possible choices at
that point in our decision chain. What those specific options are does not
matter. In Example 7, though the set of desserts allowed might change based
on particular choices we make, for each day (besides Friday) the number of
possible desserts is always exactly 3.

There are other ways to solve this problem as well. For example, we could
have started with Monday and worked forward. Although this can work, it
is much harder and involves some casework. (Try it if you don’t believe us.)
There are often several correct ways to solve counting problems, and it is
always a good idea to consider di↵erent possible approaches.

Example 9. A large cube is painted green and then chopped up into 64
smaller congruent cubes. How many of the smaller cubes have at least one
face painted green?

(Alabama ARML team selection)

Solution. We use complementary counting and determine how many cubes
have no green faces. To have no green faces, a small cube must have been on
the interior of the large cube. The large cube is 4⇥ 4⇥ 4 with respect to the
small cubes, so the interior of this cube is a 2 ⇥ 2 ⇥ 2 group of small cubes.
This is 23 = 8 small cubes with no green faces, so there are 64� 8 = 56 small
cubes with at least one face painted green.

Example 10. Suppose n � 2 is a positive integer with prime factorization
n = p↵1

1 p↵2
2 · · · p↵k

k where the pi are prime numbers and the ↵i are positive
integers. How many factors does n have?

Solution. Recall that a number x is a factor of n if n is divisible by x. In order
for this to be the case, the prime factorization of x must be x = p�1

1 p�2
2 · · · p�k

k
where 0  �i  ↵i for each i. This means we have ↵1 +1 choices for the value
of �1, ↵2+1 choices for the value of �2, and so on. Applying the Product Rule,
this tells us that the total number of divisors of n is (↵1+1)(↵2+1) · · · (↵k+1).
As an example, consider 20 = 22 · 51.
By our logic, 20 should have (2 + 1)(1 + 1) = 6 factors. They are 1, 2, 4, 5, 10,
and 20.
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Example 11. Let n and k be positive integers. Count the number of k-tuples
(S1, S2, . . . , Sk) of subsets of Si of {1, 2, . . . , n} subject to each of the following
conditions separately (i.e., the three parts are independent problems).

(a) The Si’s are pairwise disjoint.

(b) S1 \ S2 \ · · · \ Sk = ;.

(c) S1 [ S2 [ · · · [ Sk = {1, . . . , n}.

Solution.

(a) Consider a particular element j 2 {1, 2, . . . , n}. In order for the Si’s to
be pairwise disjoint, j can be in at most one of S1, . . . , Sk. This is a
total of k+1 possibilities (one for each subset and one for the possibility
of j being in none of the subsets) for each of the n elements, so by the
Product Rule there are (k+ 1)n k-tuples such that the Si’s are pairwise
disjoint.

(b) Again consider a particular element j 2 {1, 2, . . . , n}. For each of the
Si we have 2 options: either j is in Si or it is not. Thus there are a
total of 2k possible combinations of the subsets Si that j could appear
in. There is only 1 case that would violate our condition; the case where
j is contained in every Si. Thus there are 2k � 1 valid placements for
each of the n elements of {1, . . . , n}. Thus by the Product Rule there
are (2k � 1)n k-tuples satisfying S1 \ S2 \ · · · \ Sk = ;.

(c) This is actually very similar to the previous part! There is only 1 case
that would violate our condition; the case where j is contained in none of
the Si. Thus there are 2k�1 valid placements for each of the n elements
of {1, . . . , n}. Thus by the Product Rule there are (2k � 1)n k-tuples
satisfying S1 [ S2 [ · · · [ Sk = {1, . . . , n}. ⇤




