
Preface

Although sometimes overlooked in their importance, geometric inequalities
are a sharp tool for solving many problems in geometry. They often lead
to swift and elegant solutions as algebraic and trigonometric machinery is
frequently employed. For the curious reader looking to sharpen their arsenal
of mathematical strategies on the Olympiad level, geometric inequalities is
a valuable addition. This problem-solving methodology prompts key ideas
in other domains such as calculus or complex numbers as the solutions are
usually nonstandard in a geometric sense. Nevertheless, trying your hand at
these types of inequalities consolidates your math background and geometric
reasoning while exposing you to a broad range of problems, all teeming with
insightful inequality-type solutions.

The book is organized in a straightforward manner, first starting with
the basic geometric principles that come up time and time again, laying the
foundation for the essential theorems discussed and necessary for assimilating
the harder concepts that follow later. The second chapter is centered around
algebraic routines, methods for decomposing geometry problems in their alge-
braic counterparts. Introductory and advanced problems succeed the theory
as a means to reinforce the concepts presented. Every problem has solutions
and meaningful discussion about the intuition and development of them from
many points of view, not only geometric ones. Numerous problems are pre-
sented with more than one solution so that the reader can better grasp the
scope and versatility of geometric inequalities. We hope that the expansive
variety of the geometry problems and rich theory help the reader in developing
a better grasp of the efficacy of geometric inequalities and the typical practices
utilized in their solutions.

We would like to thank Chris Jeuell, who thoroughly revised the manu-
script, fixing many errors and improving the explanations.

Enjoy the problems!

Adrian Andreescu, Titu Andreescu, Oleg Mushkarov
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Chapter 1

Basic Concepts

In this chapter we consider several examples of geometric inequalities which
can be proven using the triangle inequality and its generalization for broken
lines as well as some basic examples of area inequalities.

1.1 The Triangle Inequality

Recall that the triangle inequality says that for every three points A,B,C,
we have the inequality

AB +BC ≥ CA.

We will also use its vector form, given by

|
−−→
AB|+ |

−−→
BC| ≥ |

−−→
AB +

−−→
BC|.

Note that in both inequalities, equality is attained only if B is a point on line
segment AC.

Example 1.1. Let M be a point inside triangle ABC. Prove that:

(a) MA+MB < CA+CB;

(b) MA+MB +MC < max(AB +BC,BC + CA,CA+AB).

Solution. (a) Let N be intersection of lines AM and BC (Fig. 1.1). Then
by the triangle inequality, we have BM < MN +NB and AN < CA+ CN .
Hence

AM +BM < AM +MN +BN = AN +BN < CA+CN+NB = CA+CB.

(b) Let AB ≤ BC ≤ CA. Draw the lines throughM parallel to the sides of
the triangle and denote by A1 and A2, B1 and B2, C1 and C2 the points where
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they intersect BC, CA, AB, respectively (Fig. 1.2). Then triangles A1A2M ,
MB1B2, C2MC1 are similar, and their shortest sides are MA1, MB2, C1C2,
respectively. This together with the triangle inequality implies

MA+MB +MC < (AB2 +B2M) + (MA1 +A1B) + (MA2 +A2C)

< (AB2 +B2B1) + (A1A2 +A1B) + (CB1 +A2C)

= AC +BC.

Here we have used the fact that MA2 = B1C. (Why?)

Example 1.2. (Heron’s problem) Points A and B lie on one side of a line l.
Find a point C on l such that CA+ CB is minimized.

Solution. Denote by B′ be the reflection of B in l (Fig. 1.3). The triangle
inequality for triangle ACB′ implies that

CA+ CB = CA+ CB′ ≥ AB′.

Equality occurs when C is the intersection of l and the segment AB′ (i.e.,
point C0 in Fig. 1.3).

Example 1.3. Let ABCD be a cyclic quadrilateral. Prove that

(a) |AB − CD|+ |AD −BC| ≥ 2|AC −BD|;

(b) AB +BD ≤ AC + CD if ∠A ≥ ∠D.
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Solution. (a) Let M be the intersection of the diagonals AC and BD. Then
triangles ABM and DCM are similar and

|AC −BD| = |AM +MC −BM −DM |

=

∣∣∣∣AM +BM ·
CD

AB
−BM −AM ·

CD

AD

∣∣∣∣

=
|AM −BM |

AB
· |AB − CD| ≤ |AB − CD|.

Similarly,
|AC −BD| ≤ |AD −BC|

and so
|AB − CD|+ |AD −BC| ≥ 2|AC −BD|.

(b) Note first that the given condition is equivalent to ∠MAD ≥ ∠MDA,
hence MD ≥ MA. On the other hand, we know that

CD

AB
=

CM

MB
=

DM

MA
= k ≥ 1,

and therefore

AC + CD −AB −BD = (k − 1)(AB +BM −AM) ≥ 0.

Example 1.4. Let M be a point on a segment AB and K a point in the
plane. Prove that:

(a) If M is the midpoint of AB, then

KM ≤
KA+KB

2
;
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(b) If
MB

AB
= λ, 0 < λ < 1, then

KM ≤ λKA+ (1− λ)KB.

(c) If G is the centroid of triangle ABC, then

KG ≤
KA+KB +KC

3
.

Solution. (a) Consider the point N such that ANBK is a parallelogram.
Then

KM =
1

2
KN ≤

1

2
(KB +BN) =

1

2
(KB +KA).

Note also that this inequality is a special case of (b) for λ =
1

2
.

(b) We have
−−→
KM = λ

−−→
KA+ (1− λ)

−−→
KB.

Then the triangle inequality for vectors implies

|
−−→
KM | ≤ λ |

−−→
KA|+ (1− λ) |

−−→
KB|.

(c) We know that
GM

CG
=

1

3
. Hence from (b) and (a), it follows that

KG ≤
1

3
(KC + 2KM) <

1

3
(KC +KA+KB).

This inequality also follows from the identity

−−→
KA+

−−→
KB +

−−→
KC = 3

−−→
KG

and the triangle inequality for vectors.

Example 1.5. Four points A,B,C,D are given in the plane and let E and F
be the respective midpoints of the segments AB and CD. Prove that

EF ≤
AD +BC

2
.

Solution. Let M be the midpoint of DB. Then

EF ≤ EM +MF =
1

2
AD +

1

2
BC.

Example 1.6. (Ptolemy’s inequality) For every four points A,B,C,D in the
plane, we have

AC · BD ≤ AB · CD +BC · AD.

Equality holds if and only if ABCD is a cyclic quadrilateral.
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Solution. We may assume that B lies in ∠ADC. On rays
−−→
DA,

−−→
DB,

−−→
DC,

consider the points A1, B1, C1, respectively, such that

DA1 =
1

DA
, DB1 =

1

DB
, DC1 =

1

DC
.

Then &ABC ∼ &A1B1C1 and so

A1B1 =
AB

DA ·DB
, B1C1 =

BC

DB ·DC
, C1A1 =

CA

DC ·DA
.

The desired inequality follows from the triangle inequality:

A1B1 +B1C1 ≥ A1C1.

Equality holds if and only if B1 lies on the segment A1C1, that is, when

∠BAD + ∠BCD = ∠A1B1D + ∠C1B1D = 180◦.

Example 1.7. On side AB of triangle ABC, a square with center O is con-
structed externally to the triangle. Let M and N be the respective midpoints
of sides AC and BC. Prove that

OM +ON ≤

(√
2 + 1

2

)
(AC +BC).

Show that equality holds if and only if ∠ACB = 135◦.

Solution. Let K be the midpoint of AB. Then by Ptolemy’s inequality
(Example 1.6), we have

NO ·AK ≤ AO ·NK +AN · OK,

which can be written as

NO ≤
AC

2
+

√
2

2
BC.

Similarly,

MO ≤
BC

2
+

√
2

2
AC.

Adding these inequalities yields

OM +ON ≤

(√
2 + 1

2

)
(AC +BC).

Equality holds if and only if ∠ANK = ∠BMK = 135◦, i.e., ∠ACB = 135◦.
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Example 1.8. (Pompeiu’s theorem) Let ABC be an equilateral triangle and
let M be a point in its plane. Prove that the segments AM,BM,CM are sides
of a triangle. Also prove that this triangle is degenerate if and only if M lies
on the circumcenter of triangle ABC.

First Solution. By Ptolemy’s inequality for points A,M,B,C, it follows that

AB · CM ≤ AM · BC +BM ·AC.

SinceAB = BC = CA, we get CM ≤ AM+BM . Similarly, BM ≤ CM+AM
and AM ≤ BM + CM . We have equality in one of these inequalities, say in
the first one, if and only if AMBC is a cyclic quadrilateral.

Second Solution. Consider the rotation of 60◦ about A, and let M1 be the
image of M (Fig. 1.4). Then AM = MM1, CM1 = BM , and &MM1C is the
desired triangle.

A

B

C

M

1M

Figure 1.4

Note that it degenerates if and only if the points M1, C, M are collinear which
implies that M lies on the circumcircle of triangle ABC. (Why?)

Example 1.9. Let E and F be two points outside a convex quadrilateral
ABCD such that triangles ABE and CDF are equilateral. Prove that for all
points M and N in the plane,

AM +BM +MN + CN +DN ≥ EF.

Solution. From Pompeiu’s inequality (Example 1.8) for points M,A,E,B
and N,C,F,D, it follows that

AM +BM +MN + CN +DN ≥ EM +MN + FN ≥ EF.
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1.2 Broken Lines

In this section we will use the so-called generalized triangle inequality which
says that for any points A1, A2, . . . , An, n ≥ 3 in the plane (Fig. 1.5), the
following inequality is true:

A1A2 +A2A3 + . . .+An−1An ≥ A1An.

This inequality follows by induction on n using the triangle inequality.

1A

2A

nA

1nA -

Figure 1.5

Note that equality occurs if and only if points A2, . . . , An−1 lie on the segment
A1An in this order.

Example 1.10. Given a convex polygon P , consider the polygon P ′ whose
vertices are the midpoints of the sides of P . Prove that the perimeter of P ′ is
not less than half the perimeter of P .

Solution. If n = 3, then the perimeter of triangle P ′ is half the perimeter of
triangle P . Let n ≥ 4 and let A1, A2, . . . , An be the vertices of P . Denote by
B1, B2, . . . , Bn the midpoints of A1A2, A3A4, . . . , AnA1, respectively. Then

2B1B2 + 2B2B3 + . . .+ 2BnB1

=
1

2
(A1A3 +A2A4) +

1

2
(A2A4 +A3A5) + . . .+

1

2
(AnA2 +A1A3)

>
1

2
(A1A2 +A3A4) +

1

2
(A2A3 +A4A5) + . . .+

1

2
(AnA1 +A2A3)

= A1A2 +A2A3 + . . . +AnA1.

Example 1.11. Let ABCDEF be a convex hexagon with ∠A ≥ 90◦ and
∠D ≥ 90◦. Prove that the perimeter of quadrilateral BCEF is not less than
2AD.

Solution. Denote by M,N,K the respective midpoints of BF,BE,CE
(Fig. 1.6). Note that point A lies inside the circle with diameter BF , since
∠A ≥ 90◦.

Hence AM ≤
BF

2
, and similarly, DK ≤

CE

2
. Thus

BF + FE + CB + EC ≥ 2AM + 2MN + 2NK + 2KD ≥ 2AD.
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Example 1.12. Among all quadrilaterals ABCD with AB = 3, CD = 2, and
∠AMB = 120◦, where M is the midpoint of CD, find the one of minimal
perimeter.

Solution. Let C ′ and D′ be the reflections of C and D in the lines BM and
AM , respectively (Fig. 1.7).

A

D

C

B

D M C

0

0

Figure 1.7

Then triangle C ′MD′ is equilateral because C ′M = D′M =
1

2
CD and

∠C ′MD′ = 180◦ − 2∠CMB − 2∠DMA = 60◦.

Hence

AD +
1

2
CD + CB = AD′ +D′C ′ + C ′B ≥ AB.

It follows that AD+CB ≥ AB−
1

2
CD = 2. Thus AB+BC+CD+DA ≥ 7,

with equality if and only if C ′ and D′ lie on AB.
In the latter case, ∠ADM = ∠AD′M = 120◦, ∠BCM = ∠BC ′M = 120◦,
and ∠AMD = 60◦ − ∠CMB = ∠CBM . Hence triangles AMD and MBC
are similar, implying

AD · BC =

(
CD

2

)2

= 1.
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On the other hand, AD +BC = 2, and we conclude that AD = BC = 1.
Therefore the quadrilateral ABCD of minimum perimeter is an isosceles trape-
zoid with sides AB = 3, BC = AD = 1, and CD = 2 (Fig. 1.8).

A D C B

D M C

00

Figure 1.8

Example 1.13. (Fagnano’s problem) Prove that of all triangles inscribed in
a given acute triangle, the orthic triangle has the least perimeter.

Solution. Let ABC be the given triangle and let M,N,P be arbitrary points
on the sides AB,BC,CA, respectively. Denote by E and F the respective feet
of the perpendiculars from M to AC and BC. Then the quadrilateral MFCE
is inscribed in the circle with diameter CM and therefore EF = CM sin∠C.
Let Q and R be the respective midpoints of MP and MN . Then

MN +NP + PM = 2FR+ 2QR + 2QE ≥ 2EF = 2CM sin∠C.

Let AA1, BB1, CC1 be the altitudes of triangle ABC, and let E1 and F1 be
the feet of the perpendiculars from C1 to AC and BC, respectively. Then
E1F1 = CC1 sin∠C. Denote by Q1 and R1 the respective midpoints of C1B1

and C1A1. Then

∠E1Q1B1 = 2∠E1C1B1 = 2∠C1B1B = ∠C1B1A1,

which shows that E1Q1 ‖ A1B1. Similarly, F1R1 ‖ A1B1. Hence the points
E1, Q1, R1, F1 are collinear, and we obtain

A1B1 +B1C1 + C1A1 = 2Q1R1 + 2Q1E1 + 2R1F1 = 2E1F1 = 2CC1 sin∠C.

Thus

MN +NP + PM = 2CM sin∠C ≥ 2CC1 sin∠C = A1B1 +B1C1 + C1A1.

Remark. Fagnano’s problem can also be solved in the case when the given
triangle is not acute-angled. Assume, for example, that ∠ACB ≥ 90◦. It is
not difficult to see that in this case, the triangle MNP with minimal perimeter
occurs when N = P = C and M is the foot of the altitude of triangle ABC
through C. In this case, triangle MNP is degenerate.




